On Suborbital Graphs for the Normalizer of Γ0(N)
نویسندگان
چکیده
In this study, we deal with the conjecture given in [R. Keskin, Suborbital graph for the normalizer of Γ0(m), European Journal of Combinatorics 27 (2006) 193206.], that when the normalizer of Γ0(N) acts transitively on Q ∪ {∞}, any circuit in the suborbital graph G(∞, u/n) for the normalizer of Γ0(N), is of the form v → T (v) → T (v) → · · · → T (v) → v, where n > 1, v ∈ Q ∪ {∞} and T is an elliptic mapping of order k in the normalizer of Γ0(N).
منابع مشابه
Suborbital graphs for the normalizer of Gamma0(m)
In this study, we characterize all circuits in the suborbital graph for the normalizer of Γ0(m) when m is a square-free positive integer. We propose a conjecture concerning the suborbital graphs. © 2004 Elsevier Ltd. All rights reserved. MSC: 46A40; 05C05; 20H10
متن کاملSolutions to some congruence equations via suborbital graphs
We relate the connection between the sizes of circuits in suborbital graph for the normalizer of [Formula: see text] in PSL(2,[Formula: see text]) and the congruence equations arising from related group action. We give a number theoretic result which says that all prime divisors of [Formula: see text] for any integer u must be congruent to [Formula: see text].
متن کاملHyperelliptic Modular Curves X * 0 (n ) with Square-free Levels
WN ′ = W (N) N ′ denotes the corresponding Atkin–Lehner involution defined for Γ0(N). (If N ′ = 1, W1 means the identity operator.) Then we define the modular group Γ ∗ 0 (N) to be Γ ∗ 0 (N) = 〈Γ0(N) ∪ {WN ′}N ′ ‖N 〉, i.e., Γ ∗ 0 (N) is generated by Γ0(N) and {WN ′}N ′ ‖N . Then Γ ∗ 0 (N) is a normalizer of Γ0(N) in GL + 2 (Q) = {A ∈M2(Q) | detA > 0}. The factor group Γ ∗ 0 (N)/Γ0(N) is abelian...
متن کاملThe Group Structure of the Normalizer of Γ 0 (n )
We determine the group structure of the normalizer of Γ0(N) in SL2(R) modulo Γ0(N). These results correct the Atkin-Lehner statement [1, Theorem 8].
متن کاملOn suborbital graphs for some Hecke groups
In this paper, we examine some properties of suborbital graphs for the Hecke groups , H ( √ 2); and H ( √ 3) on Q̂; √ 2Q̂; and √ 3Q̂, respectively. In addition, we give necessary and su3cient conditions for the suborbital graph G(∞; (u=n)√m) to be a forest. Finally, we completely 'nd the number of sides of all the circuits in the suborbital graphs. c © 2001 Elsevier Science B.V. All rights reserved.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electr. J. Comb.
دوره 16 شماره
صفحات -
تاریخ انتشار 2009